Geometry of Small Chemical

 Reaction NetworksElise Farr, Leo Fries, Vuong Nguyen Hoang, and Julian Hutchins
Pomona College
August 28, 2023

Real-World Example: Rust

$$
4 \mathrm{Fe}+3 \mathrm{O}_{2} \xrightarrow{\kappa_{1}} 2 \mathrm{Fe}_{2} \mathrm{O}_{3}
$$

Definitions

Real-World Example: Rust

$$
4 \mathrm{Fe}+3 \mathrm{O}_{2} \xrightarrow{\kappa_{1}} 2 \mathrm{Fe}_{2} O_{3}
$$

Definition

Species: type of object appearing in the network

$$
\text { Ex: } \mathrm{Fe}, \mathrm{O}_{2}, \mathrm{Fe}_{2} \mathrm{O}_{3}
$$

Definition

Complex: linear combination of species

$$
\text { Ex: } 4 \mathrm{Fe}+3 \mathrm{O}_{2}, 2 \mathrm{Fe}_{2} \mathrm{O}_{3}
$$

Definitions

Real-World Example: Rust

$$
4 \mathrm{Fe}+3 \mathrm{O}_{2} \xrightarrow{\kappa_{1}} 2 \mathrm{Fe}_{2} \mathrm{O}_{3}
$$

Definition

Reaction: directed edge between complexes
Ex: the single reaction arrow

Definition

Reaction rate: positive parameter κ_{i} on reaction, describes its speed
Ex: κ_{1}

Definitions

Real-World Example: Rust

$$
4 F e+3 O_{2} \xrightarrow{\kappa_{1}} 2 F e_{2} O_{3}
$$

Definition

Reactant complex: complex at the tail of a reaction arrow
Ex: $4 F e+3 O_{2}$

Definition

Support: species appearing in a complex
Ex: $\left\{F e, O_{2}\right\},\left\{\mathrm{Fe}_{2} \mathrm{O}_{3}\right\}$

Mathematical Representation

Real-World Example: Rust

$$
4 F e+3 O_{2} \xrightarrow{\kappa_{1}} 2 F e_{2} O_{3}
$$

Definition

Stoichiometric matrix: represents species' net change during reactions

$$
\text { Ex: } N=\left[\begin{array}{c}
-4 \\
-3 \\
2
\end{array}\right] \begin{aligned}
& F e \\
& O_{2} \\
& F e_{2} O_{3}
\end{aligned}
$$

Constructing an ODE System

Real-World Example: Rust

$$
4 \mathrm{Fe}+3 \mathrm{O}_{2} \xrightarrow{\kappa_{1}} 2 \mathrm{Fe}_{2} \mathrm{O}_{3}
$$

Definition

Steady-state equations: differential equations representing species' change in concentration during reactions.

$$
\begin{aligned}
f_{F e} & =\frac{d}{d t} x_{F e}=-4 \kappa_{1} x_{F e}^{4} x_{O_{2}}^{3} \\
f_{O_{2}} & =\frac{d}{d t} x_{O_{2}}=-3 \kappa_{1} x_{F e}^{4} x_{O_{2}}^{3} \\
f_{F e_{2} O_{3}} & =\frac{d}{d t} x_{F e_{2} O_{3}}=2 \kappa_{1} x_{F e}^{4} x_{O_{2}}^{3}
\end{aligned}
$$

Steady-States

Real-World Example: Rust

Definition

Steady-state: points where the concentrations of the species are not changing over time

Formally: a tuple $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ of species concentrations such that $\frac{d}{d t} x_{i}$ is zero for all species i.

$$
\begin{gathered}
f_{F e}=-4 \kappa_{1} x_{F e}^{4} x_{O_{2}}^{3}=0 \\
f_{O_{2}}=-3 \kappa_{1} x_{F e}^{4} x_{O_{2}}^{3}=0 \\
f_{F e_{2} O_{3}}=2 \kappa_{1} x_{F e}^{4} x_{O_{2}}^{3}=0
\end{gathered}
$$

Steady-State Ideal and Variety

Real-World Example: Rust

$$
4 \mathrm{Fe}+3 \mathrm{O}_{2} \xrightarrow{\kappa_{1}} 2 \mathrm{Fe}_{2} \mathrm{O}_{3}
$$

Definition

Steady-state ideal: ideal generated by the steady-state equations

Ex:

$$
I=\left\langle-4 \kappa_{1} x_{F e}^{4} x_{O_{2}}^{3},-3 \kappa_{1} x_{F e}^{4} x_{O_{2}}^{3}, 2 \kappa_{1} x_{F e}^{4} x_{O_{2}}^{3}\right\rangle \subseteq \mathbb{R}\left[x_{F e}, x_{O_{2}}, x_{F_{e_{2} O_{3}}}\right]
$$

Definition

Steady-state variety: solutions to the system of steady-state equations.

$$
\text { Ex: } x_{F e}=0, x_{O_{2}}=0
$$

Steady-State Variety

Real-World Example: Rust

$$
\begin{gathered}
f_{F e}=-4 \kappa_{1} x_{F e}^{4} x_{O_{2}}^{3}=0 \\
f_{O_{2}}=-3 \kappa_{1} x_{F e}^{4} x_{O_{2}}^{3}=0 \\
f_{F e_{2} O_{3}}=2 \kappa_{1} x_{F e}^{4} x_{O_{2}}^{3}=0 \\
x_{F e}=0, x_{O_{2}}=0
\end{gathered}
$$

Positive Steady-State Variety Real-World Example: Rust

What has useful meaning?

Definition

Positive steady-state variety: positive solutions to the system of steady-state equations.

Formally: The smallest variety containing the intersection of the steady-state variety and the interior of the positive orthant.

Ex: For rust reaction, empty.

General CRN Example

$$
2 A \underset{\kappa_{2}}{\stackrel{\kappa_{1}}{\rightleftarrows}} A+B
$$

Species: $\{A, B\}$

Complexes: $\{2 A, A+B\}$

Reactions: Forward and reverse arrows

Reaction Rates: κ_{1}, κ_{2}

Definitions Review
 General CRN Example

$$
2 A \underset{\kappa_{2}}{\stackrel{\kappa_{1}}{\rightleftarrows}} A+B
$$

Supports: $\{A\}$ and $\{A, B\}$

Stoichiometric matrix:

$$
N=\left[\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right]
$$

Steady-States
 General CRN Example

$$
2 A \underset{\kappa_{2}}{\stackrel{\kappa_{1}}{\rightleftarrows}} A+B
$$

Steady-state variety:

Steady-state equations:

$$
\begin{aligned}
f_{A} & =-\kappa_{1} x_{A}^{2}+\kappa_{2} x_{A} x_{B} \\
f_{B} & =\kappa_{1} x_{A}^{2}-\kappa_{2} x_{A} x_{B}
\end{aligned}
$$

Since $f_{A}=-f_{B}$, the zero sets overlap completely.

Positive Steady-State Varieties

General CRN Example

$$
2 A \underset{\kappa_{2}}{\stackrel{\kappa_{1}}{\rightleftarrows}} A+B
$$

Positive steady-state variety:

Closest Point Problem

Motivating Question: Given an arbitrary point u, and an algebraic set \mathbb{V}, what's the closest point $v \in \mathbb{V}$ to u ?

$\bullet \frac{\partial}{\partial x}\left[d_{u}(v)\right]=\frac{\left(x-u_{x}\right)}{\sqrt{\left(x-u_{x}\right)^{2}+\left(y-u_{y}\right)^{2}}}$
$\frac{\partial}{\partial y}\left[d_{u}(v)\right]=\frac{\left(y-u_{y}\right)}{\sqrt{\left(x-u_{x}\right)^{2}+\left(y-u_{y}\right)^{2}}}$

Singular Points

Algebraic Analysis

Definition

Singular points: places where the tangent is not well-defined, i.e. cusps and points of self-intersection.

Figure: Singular point at $(2,0)$, self-intersection

Euclidean Distance Degree

Algebraic Analysis

Definition

The Euclidean Distance Degree (EDD) is the number of non-singular critical points of the distance formula.

Ex: The EDD of a parabola is 3.

Standard Definition of an Evolute

Figure: Evolute of a parabola, made from centers of curvature

Connection to EDD

Algebraic Analysis

- EDD is constant with respect to complex solutions
- Number of real solutions varies, evolute acts as a discriminant
- Divides the plane into regions with a constant number of real solutions

Connection to EDD

- For u on the evolute, solutions have multiplicity

Original 25 Networks

List of genuine at-most bimolecular 2-species, 2-reaction networks from a paper by Obatake, Shiu, \& Sofia.

Criteria for the 25 :

- Non-zero mixed volume
- 17 had non-empty positive steady-state varieties

	Network	Mixed vol.		Network	Mixed vol.
(1)	$2 \mathrm{~A} \longrightarrow 2 \mathrm{~B} \longrightarrow \mathrm{~A}+\mathrm{B}$	2	(14)	$2 \mathrm{~A} \longrightarrow \mathrm{~A}, \mathrm{~A}+\mathrm{B} \longrightarrow \mathrm{B}$	1
(2)	$2 \mathrm{~A} \longrightarrow 2 \mathrm{~B}, \mathrm{~B} \longrightarrow \mathrm{~A}$	2	(15)	$\mathrm{A}+\mathrm{B} \rightleftharpoons 0$	2
(3)	$2 \mathrm{~A} \longrightarrow \mathrm{~A}, \mathrm{~B} \longrightarrow \mathrm{~A}+\mathrm{B}$	2	(16)	$\mathrm{B} \longrightarrow \mathrm{A}, \mathrm{A}+\mathrm{B} \longrightarrow 2 \mathrm{~A}$	1
(4)	$\mathrm{B} \longrightarrow \mathrm{A}, 2 \mathrm{~A} \longrightarrow \mathrm{~A}+\mathrm{B}$	2	(17)	$0 \longrightarrow 2 \mathrm{~B}, \mathrm{~A}+\mathrm{B} \longrightarrow \mathrm{A}$	1
(5)	$\mathrm{B} \longrightarrow \mathrm{A}, 2 \mathrm{~B} \longrightarrow \mathrm{~A}+\mathrm{B}$	1	(18)	$2 \mathrm{~B} \longrightarrow 0, \mathrm{~A}+\mathrm{B} \longrightarrow \mathrm{A}$	1
(6)	$2 \mathrm{~A} \rightleftharpoons 2 \mathrm{~B}$	2	(19)	$\mathrm{A}+\mathrm{B} \longrightarrow 2 \mathrm{~A} \longrightarrow 2 \mathrm{~B}$	1
(7)	$2 \mathrm{~A} \longrightarrow \mathrm{~A}+\mathrm{B} \longleftarrow 2 \mathrm{~B}$	2	(20)	$\mathrm{A}+\mathrm{B} \longrightarrow 2 \mathrm{~B} \longrightarrow \mathrm{~A}+\mathrm{B}$	1
(8)	$\mathrm{B} \longrightarrow \mathrm{A}, 2 \mathrm{~B} \longrightarrow 2 \mathrm{~A}$	1	(21)	$\mathrm{A}+\mathrm{B} \longrightarrow 2 \mathrm{~B}, \mathrm{~B} \longrightarrow \mathrm{~A}$	1
	$\mathrm{B} \longrightarrow 2 \mathrm{~B}, \mathrm{~A} \longrightarrow \mathrm{~A}+\mathrm{B}$	1	(22)	$\mathrm{A} \longrightarrow 0, \mathrm{~B} \longrightarrow \mathrm{~A}+\mathrm{B}$	1
(10)	$2 \mathrm{~B} \longrightarrow 0, \mathrm{~A} \longrightarrow \mathrm{~A}+\mathrm{B}$	2	(23)	$\mathrm{A} \rightleftharpoons \mathrm{B}$	1
(11)	$A \rightleftharpoons 2 B$	2	(24)	$\mathrm{A}+\mathrm{B} \longrightarrow \mathrm{A}, \mathrm{O} \longrightarrow \mathrm{B}$	1
(12)	$\mathrm{A}+\mathrm{B} \longrightarrow 2 \mathrm{~B} \longleftarrow 2 \mathrm{~A}$	1	(25)	$\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{A}$	1
(13)	$2 \mathrm{~A} \longrightarrow \mathrm{~A}+\mathrm{B} \longrightarrow 2 \mathrm{~B}$	1			

Figure: Networks with non-zero mixed volume

Data and Findings

Original 25 Networks

	A	B	c	D	E	F	G	H	1	J	K	L
1	networks	EDD	degree	dim	weakly reversible	deficiency	dim of sing locus	shape of graph	relationship with rate constants	eqn of SS variety ($\mathrm{xa}=\mathrm{x}, \mathrm{xb}=\mathrm{y}$)	positive SS variety	EDD of PSSV
2	$R 22: A->0, B \rightarrow-A+B$	1	1		F	1	-1	line	slope k1/k2	$y=k 1 / k 2 x$	$y=k 1 / k 2 x$	1
3	R23: $A \rightarrow-B, B \rightarrow>A$	1	1		T	0	-1	line	slope k1/k2	$y=k 1 / k 2 x$	$y=k 1 / k 2 x$	1
4	R9: $B \rightarrow-2 B, A->B+A$	1	1		F	1	-1	line	slope -k2/k1	$y=-k 2 / k 1 x$	empty	0
5	R5: $B \rightarrow-A, 2 B->B+A$	2	2		F	1	-1	horizontal parallel lines	lines $\mathrm{y}=0,-\mathrm{k} 1 / \mathrm{k} 2$	$y(k 1+k 2 y)=0$	empty	0
6	R8: $B \rightarrow-A, 2 B->2 A$	2	2		F	1	-1	horizontal parallel lines	lines $\mathrm{y}=0,-\mathrm{k} 1 / 2 \mathrm{k} 2$	$y(k 1+2 \mathrm{k} 2 \mathrm{y})=0$	empty	0
7	R16: $B \rightarrow-A, B+A \rightarrow 2 A$	2	2		F	1	0	plus sign	lines $\mathrm{y}=0, \mathrm{x}=-\mathrm{k} 1 / \mathrm{k} 2$	$y(k 1+k 2 x)=0$	empty	0
8	R21: $A+B \rightarrow-2 B, B->A$	2	2		F	1	0	plus sign	lines $y=0, x=k 2 / k 1$	$y(k 1 x-k 2)=0$	$\mathrm{x}=\mathrm{k} 2 / \mathrm{k} 1$ (vertical)	1
9	$R 25: A+B \rightarrow A, A \rightarrow A+B$	2	2		T	0	0	plus sign	lines $x=0, y=k 2 / k 1$	$x(k 2-k 1 y)=0$	$y=k 2 / k 1$ (horizontal)	1
10	R12: $A+B \rightarrow 2 B, 2 A \rightarrow 2 B$	2	2		F	1	0	rotated X at origin	lines $x=0$ and $y=-2 \mathrm{k} 2 / \mathrm{k} 1 \mathrm{x}$	$x(k 1 y+2 k 2 x)=0$	empty	0
11	R14: $2 A \rightarrow A, A+B \rightarrow B$	2	2		F	1	0	rotated X at origin	lines $x=0$ and $y=-k 1 / k 2 x$	$x(k 1 x+k 2 y)=0$	empty	0
12	R13: $2 A \rightarrow->A+B, A+B \rightarrow 2 B$	2	2	1	F	1	0	rotated X at origin	lines $x=0$ and $y=-k 1 / k 2 x$	$x(k 1 x+k 2 y)=0$	empty	0
13	R18: $2 B \rightarrow-0, B+A \rightarrow A$	2	2		F	1	0	rotated X at origin	lines $y=0$ and $y=-k 2 / 2 k 1 x$	$y(2 k 1 y+k 2 x)=0$	empty	0
14	R19: $A+B \rightarrow 2 A, 2 A \rightarrow 2 B$	2	2		F	1	0	rotated X at origin	lines $x=0$ and $y=2 \mathrm{k} 2 / \mathrm{k} 1 \mathrm{x}$	$x(k 1 y-2 k 2 x)=0$	$y=2 \mathrm{k} 2 / \mathrm{k} 1 \mathrm{x}$	1
15	$R 20: A+B \rightarrow 2 B, 2 B \rightarrow-A+B$	2	2		T	0	0	rotated X at origin	lines $y=0$ and $y=k 1 / k 2 x$	$y(k 1 x-k 2 y)=0$	$y=k 1 / k 2 x$	1
16	R6: $2 \mathrm{~A}-\cdots 2 \mathrm{~B}, 2 \mathrm{~B} \rightarrow-2 \mathrm{~A}$	2	2		T	0	0	X at origin	slopes are pm sqrt(k1/k2)	$y^{\wedge} 2=k 1 / k 2 x^{\wedge} 2$	$y=\operatorname{sq\prime t}(\mathrm{k} 1 / \mathrm{kz}) \mathrm{x}$	1
17	R1: $2 A->2 B, 2 B->A+B$	2	2		F	1	0	X at origin	slopes are pm sqrt($2 \mathrm{k} 1 / \mathrm{k} 2$)	$y^{\wedge} 2=2 \mathrm{k} 1 / \mathrm{k} 2 \mathrm{x}^{\wedge} 2$	$y=\operatorname{sqrit}(2 \mathrm{k} 1 / \mathrm{k} 2) \mathrm{x}$	1
18	R7: $2 A-->A+B, 2 B->A+B$	2	2		F	1	0	X at origin	slopes are pm sqrt(k1/k2)	$y^{\wedge} 2=k 1 / k 2 x^{\wedge} 2$	$y=\operatorname{sqrt}(\mathrm{k} 1 / \mathrm{k} 2) \mathrm{x}$	1
19	R2: $2 A->2 B, B \rightarrow-A$	3	2		F	1	-1	parabola	through ($1,2 \mathrm{k} 1 / \mathrm{k} 2)$	$y=2 k 1 / k 2 x^{\wedge} 2$	$y=2 \mathrm{k} 1 / \mathrm{k} 2 \mathrm{x}^{\wedge} 2$	3
20	R3: $2 A \rightarrow-A, B \rightarrow-A+B$	3	2		F	1	-1	parabola	through ($1, \mathrm{k} 1 / \mathrm{k} 2)$	$y=k 1 / k 2 x^{\prime} 2$	$y=k 1 / k 2 x^{\wedge} 2$	3
21	$R 4: B \rightarrow-A, 2 A->B+A$	3	2		F	1	-1	parabola	through (1, k2/k1)	$y=k 2 / k 1 x^{*} 2$	$y=k 2 / k 1 x^{\wedge} 2$	3
22	R10: $2 B \rightarrow-0, A->B+A$	3	2		F	1	-1	sideways parabola	through ($2 \mathrm{k} 1 / \mathrm{k} 2,1$)	$\mathrm{x}=2 \mathrm{k} 1 / \mathrm{k} 2 \mathrm{y}^{\wedge} 2$	$x=2 \mathrm{k} 1 / \mathrm{k} 2 \mathrm{y}^{\wedge} 2$	3
23	R11: $A->2 B, 2 B->A$	3	2		T	0	-1	sideways parabola	through (k2/k1,1)	$\mathrm{x}=\mathrm{k} 2 / \mathrm{k} 1 \mathrm{y}^{\prime} 2$	$x=k 2 / k 1 y^{\wedge} 2$	3
24	R15: $A+B \rightarrow 0,0 \rightarrow-A+B$	4	2		T	0	-1	hyperbola	through (k2/k1, 1) and (-k2/k1, -1)	$x y=k 2 / k 1$	$x y=k 2 / \mathrm{k} 1$	4
25	R17: $0 \rightarrow 2 B, B+A \rightarrow A$	4	2		F	1	-1	hyperbola	through ($2 \mathrm{k} 1 / \mathrm{k} 2,1)$ and $(-2 \mathrm{k} 1 / \mathrm{k} 2,-1)$	$\mathrm{xy}=2 \mathrm{k} 1 / \mathrm{k} 2$	$\mathrm{xy}=2 \mathrm{k} 1 / \mathrm{k} 2$	4
26	R24: $A+B \rightarrow-A, 0 \rightarrow B$	4	2		F	1	-1	hyperbola	through ($\mathrm{k} 2 / \mathrm{k} 1,1$) and ($-\mathrm{k} 2 / \mathrm{k} 1,-1$)	$x y=k 2 / k 1$	$x y=k 2 / \mathrm{k} 1$	4

- Originally focused on EDD
- Moved on to categorizing by steady-state and positive steady-state varieties

Steady-State Varieties

Original 25 Networks

Steady-state variety types:
parallel lines, plus sign, X shape
parabola, hyperbola
Positive steady-state variety types:
slanted line, vertical or horizontal line, parabola, hyperbola

Figure: X shape

Figure: Parabola

Fioure Hynerhola Geometry of Small CRNs

Expanding Beyond 2S2R

Table enumerating CRNs

from https://reaction-networks.net/networks/

Table 2: Genuine networks (no unused species)							
	1 Reaction	2 Reactions	3 Reactions	4 Reactions	5 Reactions	6 Reactions	Total
1 Species	6	15	20	15	6	1	63
2 Species	10	2T0	2,024	13,740	71,338	297,114	384,436
3 Species	5	495	17,890	414,015	$\begin{aligned} & \text { 7,262,666 } \\ & \text { (zip: } 12.5 \mathrm{MB}, \\ & \text { unzip: } 473 \mathrm{MB} \text {) } \end{aligned}$	103,511,272 (zip: 197 MB , unzip: 7.97 GB)	111,206,343
4 Species	1	451	47,323	2,900,934	$\begin{aligned} & 128,328,834 \\ & \text { (zip: } 196 \mathrm{MB}, \\ & \text { unzip: } 8.88 \mathrm{~GB} \text {) } \end{aligned}$		131,277,543
5 Species	0	204	55,682	$\begin{aligned} & 7,894,798 \\ & \text { (zip: } 10.6 \mathrm{MB} \\ & \text { unzip: } 466 \mathrm{MB} \text {) } \end{aligned}$			7,950,684
6 Species	0	54	35,678	$\begin{aligned} & 10,704,289 \\ & \text { (zip: } 15.1 \mathrm{MB}, \\ & \text { unzip: } 650 \mathrm{MB} \text {) } \end{aligned}$			10,740,021
Total	22	1,429	158,617	21,927,791	135,662,844	103,808,387	261,559,090

1-species networks, 3S2R, 2S2R with higher molecularity

One-Species Findings

Expanding Beyond 2S2R
Rate-Dependent Varieties

Steady-state equation:

$$
\begin{aligned}
& A \xrightarrow{\kappa_{1}} 2 A \\
& A \xrightarrow{\kappa_{2}} 0
\end{aligned}
$$

$$
f_{A}=\kappa_{1} x_{A}-\kappa_{2} x_{A}-2 \kappa_{3} x_{A}^{2}
$$

$$
=x_{A}\left(\kappa_{1}-\kappa_{2}-2 \kappa_{3} x_{A}\right)
$$

Steady-state variety:

$$
x_{A}=0, x_{A}=\frac{\kappa_{1}-\kappa_{2}}{2 \kappa_{3}}
$$

Positive steady-state variety nonempty when $\kappa_{1}>\kappa_{2}$

Coming Back with a Broader Perspective

 Expanding Beyond 2S2RHow can we categorize these steady-state varieties using the new info we have?

- Is mixed volume the best way to determine which networks have positive steady-state varieties?
- Applying code developed with larger databases to solve computational problems in 2S2R

Let's check all 210 chemical reaction networks!

Translation Algorithm

All 210 networks were listed as strings of numbers in a .txt file

- first digit, m, is the number of reactions
- second digit, n, is the number of species
all numbers after are listed as pairs
here, we have $m, n=2$, and 4 pairs after

2203032121

Networks were derived from the database at https://reaction-networks. net/networks/.

Translation Algorithm

2203032121

Our string, omitting the $m \& n$ entries, is described by the set

$$
H=\{0,1,2,3\}
$$

The pairs are made of one species number and one reaction number.

These numbers are all entries, h_{i}, in H
Reaction numbers: $0 \leq h_{i} \leq m-1$
Species numbers: $m \leq h_{i} \leq m+n-1$

- Here, the set of reaction and species numbers are

$$
R=\{0,1\}, S=\{2,3\}
$$

Translation Algorithm

2203032121

- Individual reactions and species are labeled sequentially.

ค $R=\{0,1\} \Rightarrow r_{0}, r_{1}$ are our reactions
$S=\{2,3\} \Rightarrow 2=A=s_{1}, 3=B=s_{2}$
The ordering of r_{i}, s_{i} in a pair tells you if s_{i} is in the product or reactant complex.
$\left(s_{i}, r_{i}\right) \Rightarrow s_{i}$ is in the reactant complex
$\bigcirc\left(r_{i}, s_{i}\right) \Rightarrow s_{i}$ is in the product complex
Example: $(0,3)$ is $\left(r_{0}, s_{2}\right)$, and $(2,1)$ is $\left(s_{1}, r_{1}\right)$ which becomes

$$
(0,3): \longrightarrow B
$$

$$
(2,1): A \longrightarrow
$$

Translation Algorithm

2203032121

- In this network, the pairs $(0,3)$ and $(2,1)$ have multiplicity 2

So, "multiply" these reactions each by 2

- Combine like reactions, "adding" complexes.

$$
\begin{aligned}
& (0,3): \longrightarrow B \\
& (0,3): \longrightarrow B \\
& (2,1): A \longrightarrow \\
& (2,1): A \longrightarrow
\end{aligned}
$$

Now add the respective reaction rates κ_{1}, κ_{2} :

$$
\begin{gathered}
0 \xrightarrow{\kappa_{1}} 2 B \\
2 A \xrightarrow{\kappa_{2}} 0
\end{gathered}
$$

Further Coding and Calculations

- Made a function, called superEDD, to compute various qualities

EDD, codim $(I), \operatorname{deg}(I)$, generators and dimensions of the singular locus, steady-state equations

- Noticed errors whenever the ideal was equal to the entire plane.
correspond to empty steady-state varieties
- Graphed and recorded all of the other networks.

New Steady-State Varieties

Among the rest of the 210 networks, four new steady-state variety classes emerged:

1. Empty
2. The origin
3. Single coordinate axis
4. Both coordinate axes

Only one of the 185 new reactions had a nonempty positive steady-state variety.

Positive Steady-State Varieties

There are four possible shapes of a nonempty positive steady-state variety:

1. Horizontal/vertical line
2. Line through the origin
3. Parabola
4. Hyperbola

We proved classifications of all networks producing each type of variety.

Lines

Positive Steady-State Varieties

Figure: Line through origin

$$
2 A \underset{\kappa_{2}}{\stackrel{\kappa_{1}}{\rightleftarrows}} 2 B
$$

Figure: Vertical line

$$
\begin{array}{r}
B \xrightarrow{\kappa_{1}} 2 B \\
A+B \xrightarrow{\kappa_{2}} A
\end{array}
$$

Degree 2 Conics
Positive Steady-State Varieties

Figure: Parabola

$$
A \underset{\kappa_{2}}{\stackrel{\kappa_{1}}{\rightleftarrows}} 2 B
$$

Figure: Hyperbola

$$
A+B \underset{\kappa_{2}}{\stackrel{\kappa_{1}}{\rightleftarrows}} 0
$$

Horizontal/Vertical Lines

Looking for Patterns

$$
\begin{array}{cl}
A+B \xrightarrow{\kappa_{1}} 2 B & N=\left[\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right] \\
B \xrightarrow[\kappa_{2}]{\kappa_{2}} A & N=\left[\begin{array}{cc}
0 & 0 \\
-1 & 1
\end{array}\right]
\end{array}
$$

Horizontal/Vertical Lines

Categorization Theorem

Theorem $\left(F_{2} H_{2}, 2023\right)$

Given a chemical reaction network, the positive steady-state variety will be non-axis horizontal or vertical line if and only if the following criteria are true:

1. One reactant complex is $A+B$ and the other is monomolecular
2. The columns of the stoichiometric matrix are negative multiples of one another.

Horizontal/Vertical Lines

Worked Example

$$
\begin{gathered}
A+B \xrightarrow{\kappa_{1}} 2 B \\
B \xrightarrow{\kappa_{2}} A \\
N=\left[\begin{array}{ll}
-1 & 1 \\
-1 & 1
\end{array}\right] \\
f_{A}=-\kappa_{1} x_{A} x_{B}+\kappa_{2} x_{B} \\
f_{B}=\kappa_{1} x_{A} x_{B}-\kappa_{2} x_{B} \\
x_{B}=0, x_{B}=\frac{\kappa_{2}}{\kappa_{1}}
\end{gathered}
$$

Reactant complexes are $A+B$ and B

The columns differ by a factor of -1

- $f_{A}=-f_{B}$
- Positive portion of the variety is a vertical line

Slanted Lines

Looking for Patterns

Three examples of slanted line networks:

$$
\begin{array}{cl}
A+B \xrightarrow{\kappa_{1}} 2 A & N=\left[\begin{array}{cc}
1 & -2 \\
-1 & 2
\end{array}\right] \\
2 A \xrightarrow[\kappa_{2}]{\kappa_{2}} 2 B & N=\left[\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right] \\
A \underset{\kappa_{2}}{\stackrel{\kappa_{1}}{\rightleftarrows}} B & N=\left[\begin{array}{cc}
-2 & 2 \\
2 & -2
\end{array}\right]
\end{array}
$$

Slanted Lines

Theorem $\left(F_{2} H_{2}\right.$, 2023)

Given a chemical reaction network, the positive steady-state variety will be a line through the origin if and only if the following hold:

1. The two reactant complexes have the same number of molecules
2. The supports of the reactant complexes are nonempty and distinct (not necessarily disjoint).
3. The columns of the stoichiometric matrix are negative multiples of each other.

Slanted Lines

Worked Example

$$
\begin{array}{r}
A+B \xrightarrow{\kappa_{1}} 2 A \\
2 A \xrightarrow{\kappa_{2}} 2 B
\end{array}
$$

$$
N=\left[\begin{array}{cc}
1 & -2 \\
-1 & 2
\end{array}\right]
$$

$$
x_{A}=0, x_{B}=\frac{2 \kappa_{2}}{\kappa_{1}} x_{A}
$$

- Reactant complexes have the same number of molecules and distinct supports
- $f_{A}=-f_{B}$

Columns differ by a factor of -2

Positive portion of the variety is a slanted line

Parabolas

Looking for Patterns

Three examples of parabola networks:

$$
\begin{aligned}
& 2 A \xrightarrow{\kappa_{1}} A \\
& B \xrightarrow{\kappa_{2}} A+B \\
& 2 B \xrightarrow{\kappa_{1}} 0 \\
& A \xrightarrow{\kappa_{2}} A+B \\
& 2 A \xrightarrow{\kappa_{1}} 2 B \\
& B \xrightarrow{\kappa_{2}} A
\end{aligned}
$$

$$
N=\left[\begin{array}{cc}
-1 & 1 \\
0 & 0
\end{array}\right]
$$

$$
N=\left[\begin{array}{cc}
-2 & 1 \\
0 & 0
\end{array}\right]
$$

$$
N=\left[\begin{array}{cc}
-2 & 1 \\
2 & -1
\end{array}\right]
$$

Parabolas

Categorization Theorem

Theorem $\left(F_{2} H_{2}\right.$, 2023)

Given a chemical reaction network, the positive steady-state variety will be a parabola if and only if the following hold:

1. One reactant complex is bimolecular and the other is monomolecular
2. The supports of the reactant complexes are disjoint
3. The columns of the stoichiometric matrix are negative linear multiples of each other.

Parabolas

$$
\begin{gathered}
N=\left[\begin{array}{cc}
-2 & 1 \\
2 & -1
\end{array}\right] \\
f_{A}=-2 \kappa_{1} x_{A}^{2}+\kappa_{2} x_{B} \\
f_{B}=2 \kappa_{1} x_{A}^{2}-\kappa_{2} x_{B} \\
x_{B}=\frac{2 \kappa_{1}}{\kappa_{2}} x_{A}^{2}
\end{gathered}
$$

$$
\begin{gathered}
2 A \xrightarrow{\kappa_{1}} 2 B \\
B \xrightarrow{\kappa_{2}} A
\end{gathered}
$$

Supports of the reactant complexes are disjoint; bimolecular \& monomolecular. bimolecular \& monomolecular.

Columns differ by a factor of -2
$f_{A}=-f_{B}$

Variety is defined by the equation of a parabola

Hyperbolas

Looking for Patterns

All hyperbola networks:

$$
\begin{array}{cl}
0 \xrightarrow{\kappa_{1}} 2 B & N=\left[\begin{array}{cc}
0 & 0 \\
2 & -1
\end{array}\right] \\
A+B \xrightarrow{\kappa_{2}} A & N=\left[\begin{array}{ll}
-1 & 1 \\
-1 & 1
\end{array}\right] \\
A+B \underset{\kappa_{2}}{\stackrel{\kappa_{1}}{\rightleftarrows} 0} & N=\left[\begin{array}{cc}
0 & 0 \\
-1 & 1
\end{array}\right]
\end{array}
$$

Hyperbolas

Categorization Theorem

Theorem $\left(F_{2} H_{2}, 2023\right)$
Given a chemical reaction network, the positive steady-state variety will be a hyperbola if and only if the following hold:

1. The reactant complexes are $A+B$ and 0
2. The columns of the stoichiometric matrix are negative linear multiples of each other.

Hyperbolas

$$
\begin{gathered}
A+B \underset{\kappa_{2}}{\stackrel{\kappa_{1}}{\rightleftarrows}} 0 \\
N=\left[\begin{array}{ll}
-1 & 1 \\
-1 & 1
\end{array}\right] \\
f_{A}=-\kappa_{1} x_{A} x_{B}+\kappa_{2} \\
f_{B}=-\kappa_{1} x_{A} x_{B}+\kappa_{2} \\
x_{A} x_{B}=\frac{\kappa_{2}}{\kappa_{1}}
\end{gathered}
$$

Reactant complexes are $A+B$ and 0

Columns differ by a factor of
-1
$f_{A}=f_{B}$

- Variety is defined by the equation of a hyperbola

Future Directions - Higher Molecularity

Conjecture

For slanted lines:
Molecularity of distinct supports is even $\Rightarrow 2$ lines in SSV odd $\Rightarrow 1$ line in SSV

Conjecture

For horizontal/vertical lines:
Molecularity of non-shared reactant species is:

$$
\begin{aligned}
& \text { even } \Rightarrow 0,2 \text { lines in SSV } \\
& \text { odd } \Rightarrow 1 \text { line in SSV }
\end{aligned}
$$

Ex:

$$
2 A+2 B \xrightarrow{\kappa_{1}} 3 A+B
$$

$$
2 B+A \xrightarrow{\kappa_{2}} 3 B
$$

Future Directions - Higher Molecularity

Conjecture

The variety types of networks only depend on reactant complexes, as long as columns of stoichiometric matrix are negative multiples of each other

$$
\begin{array}{c|c}
2 A+2 B \xrightarrow{\kappa_{1}} 3 A+B & 2 A+2 B \xrightarrow{\kappa_{1}} B \\
2 B+A \xrightarrow{\kappa_{2}} 3 B & 2 B+A \xrightarrow{\kappa_{2}} 3 A+3 B
\end{array}
$$

Future Directions - Larger Networks

Table 2: Genuine networks (no unused species)

	1 Reaction	2 Reactions	3 Reactions	4 Reactions	5 Reactions	6 Reactions	Total
1 Species	6	15	20	15	6	1	63
2 Species	10	210	2,024	13,740	71,338	297,114	384,436
3 Species	5	495	17,890	414,015	$7,262,666$ (zip: 12.5 MB , unzip: 473 MB)	$\begin{aligned} & 103,511,272 \\ & \text { (zip: } 197 \mathrm{MB}, \\ & \text { unzip: } 7.97 \mathrm{~GB} \text {) } \end{aligned}$	111,206,343
4 Species	1	451	47,323	2,900,934	$\begin{aligned} & 128,328,834 \\ & \text { (zip: } 196 \mathrm{MB} \\ & \text { unzip: } 8.88 \mathrm{~GB} \text {) } \end{aligned}$		131,277,543
5 Species	0	204	55,682	7,894,798 (zip: 10.6 MB , unzip: 466 MB)			7,950,684
6 Species	0	54	35,678	10,704,289 (zip: 15.1 MB, unzip: 650 MB)			10,740,021
Total	22	1,429	158,617	21,927,791	135,662,844	103,808,387	261,559,090

Figure: There remains a lot left to explore...

Elise, Leo, Vuong, and Julian (PRiME) Geometry of Small CRNs

Acknowledgments

Thank you Professor Luis \& Mark!

Acknowledgments

Thank you also to Dr. Goins \& Dr. Barrios for running PRiME 2023.
Funding for this project was provided by Pomona College and the National Science Foundation (DMS-2113782).

References

[1] Murad Banaji. Chemical reaction network enumeration. https://reaction-networks.net/networks/.
[2] Jane Ivy Coons, Mark Curiel, and Elizabeth Gross. Mixed volumes of networks with binomial steady-states, 2023.
[3] Jan Draisma, Emil Horobeț, Giorgio Ottaviani, Bernd Sturmfels, and Rekha R. Thomas. The Euclidean distance degree of an algebraic variety. Found. Comput. Math., 16(1) : 99 - 149, 2016.
[4] Nida Obatake, Anne Shiu, and Dilruba Sofia. Mixed volume of small reaction networks. Involve, a Journal of Mathematics, 13(5) : $845-860$, dec 2020.

