Geometry of Small Chemical Reaction Networks

Elise Farr, Leo Fries, Vuong Nguyen Hoang, and Julian Hutchins

Pomona College

August 28, 2023

Real-World Example: Rust

$4Fe + 3O_2 \xrightarrow{\kappa_1} 2Fe_2O_3$

Definitions Real-World Example: Rust

$$4Fe + 3O_2 \xrightarrow{\kappa_1} 2Fe_2O_3$$

Definition

Species: type of object appearing in the network

Ex:
$$Fe$$
, O_2 , Fe_2O_3

Definition

Complex: linear combination of species

Ex:
$$4Fe + 3O_2$$
, $2Fe_2O_3$

Definitions Real-World Example: Rust

$$4Fe + 3O_2 \xrightarrow{\kappa_1} 2Fe_2O_3$$

Definition

Reaction: directed edge between complexes

Ex: the single reaction arrow

Definition

Reaction rate: positive parameter κ_i on reaction, describes its speed

Ex: κ_1

Definitions Real-World Example: Rust

$$4Fe + 3O_2 \xrightarrow{\kappa_1} 2Fe_2O_3$$

Definition

Reactant complex: complex at the tail of a reaction arrow

Ex: $4Fe + 3O_2$

Definition

Support: species appearing in a complex

Ex:
$$\{Fe, O_2\}, \{Fe_2O_3\}$$

Mathematical Representation Real-World Example: Rust

$$4Fe + 3O_2 \xrightarrow{\kappa_1} 2Fe_2O_3$$

Definition

Stoichiometric matrix: represents species' net change during reactions

Ex:
$$N = \begin{bmatrix} -4 \\ -3 \\ 2 \end{bmatrix}$$
 $\begin{array}{c} Fe \\ O_2 \\ Fe_2O_3 \end{array}$

Constructing an ODE System Real-World Example: Rust

$$4Fe + 3O_2 \xrightarrow{\kappa_1} 2Fe_2O_3$$

Definition

Steady-state equations: differential equations representing species' change in concentration during reactions.

$$f_{Fe} = \frac{d}{dt} x_{Fe} = -4\kappa_1 x_{Fe}^4 x_{O_2}^3$$
$$f_{O_2} = \frac{d}{dt} x_{O_2} = -3\kappa_1 x_{Fe}^4 x_{O_2}^3$$
$$f_{Fe_2O_3} = \frac{d}{dt} x_{Fe_2O_3} = 2\kappa_1 x_{Fe}^4 x_{O_2}^3$$

Definition

Steady-state: points where the concentrations of the species are not changing over time

Formally: a tuple $(x_1, x_2, ..., x_n) \in \mathbb{R}^n$ of species concentrations such that $\frac{d}{dt}x_i$ is zero for all species i.

$$f_{Fe} = -4\kappa_1 x_{Fe}^4 x_{O_2}^3 = 0$$

$$f_{O_2} = -3\kappa_1 x_{Fe}^4 x_{O_2}^3 = 0$$

$$f_{Fe_2O_3} = 2\kappa_1 x_{Fe}^4 x_{O_2}^3 = 0$$

Steady-State Ideal and Variety Real-World Example: Rust

$$4Fe + 3O_2 \xrightarrow{\kappa_1} 2Fe_2O_3$$

Definition

Steady-state ideal: ideal generated by the steady-state equations

Definition

Steady-state variety: solutions to the system of steady-state equations.

Ex:
$$x_{Fe} = 0$$
, $x_{O_2} = 0$

Steady-State Variety Real-World Example: Rust

$$f_{Fe} = -4\kappa_1 x_{Fe}^4 x_{O_2}^3 = 0$$
$$f_{O_2} = -3\kappa_1 x_{Fe}^4 x_{O_2}^3 = 0$$
$$f_{Fe_2O_3} = 2\kappa_1 x_{Fe}^4 x_{O_2}^3 = 0$$

$$x_{Fe} = 0, \ x_{O_2} = 0$$

What has useful meaning?

Definition

Positive steady-state variety: positive solutions to the system of steady-state equations.

Formally: The smallest variety containing the intersection of the steady-state variety and the interior of the positive orthant.

Ex: For rust reaction, empty.

General CRN Example

$$2A \xrightarrow[\kappa_2]{\kappa_1} A + B$$

Species: $\{A, B\}$

Complexes:
$$\{2A, A+B\}$$

Reactions: Forward and reverse arrows

Reaction Rates: κ_1 , κ_2

Definitions Review General CRN Example

$$2A \xrightarrow[\kappa_2]{\kappa_1} A + B$$

Supports: $\{A\}$ and $\{A, B\}$

Stoichiometric matrix:

$$N = \begin{bmatrix} -1 & 1\\ 1 & -1 \end{bmatrix}$$

Steady-States General CRN Example

$$2A \xrightarrow[\kappa_2]{\kappa_1} A + B$$

Steady-state variety:

Steady-state equations:

$$f_A = -\kappa_1 x_A^2 + \kappa_2 x_A x_B$$
$$f_B = \kappa_1 x_A^2 - \kappa_2 x_A x_B$$

Since $f_A = -f_B$, the zero sets overlap completely.

Positive Steady-State Varieties General CRN Example

$$2A \xrightarrow[\kappa_2]{\kappa_1} A + B$$

Positive steady-state variety:

Closest Point Problem Algebraic Analysis

Motivating Question: Given an arbitrary point u, and an algebraic set \mathbb{V} , what's the closest point $v \in \mathbb{V}$ to u?

•
$$\frac{\partial}{\partial x}[d_u(v)] = \frac{(x-u_x)}{\sqrt{(x-u_x)^2 + (y-u_y)^2}}$$

Elise, Leo, Vuong, and Julian (PRiME) Geometry

Geometry of Small CRNs

Singular Points Algebraic Analysis

Figure: Singular point at (2,0), self-intersection

Euclidean Distance Degree

Algebraic Analysis

Definition

The *Euclidean Distance Degree* (EDD) is the number of non-singular critical points of the distance formula.

Ex: The EDD of a parabola is 3.

Standard Definition of an Evolute Algebraic Analysis

Figure: Evolute of a parabola, made from centers of curvature

Connection to EDD

Algebraic Analysis

- EDD is constant with respect to complex solutions
- Number of real solutions varies, evolute acts as a discriminant
- Divides the plane into regions with a constant number of real solutions

Connection to EDD

For u on the evolute, solutions have multiplicity Y

Original 25 Networks

List of genuine at-most bimolecular 2-species, 2-reaction networks from a paper by Obatake, Shiu, & Sofia.

- Criteria for the 25:
 - Non-zero mixed volume
- 17 had non-empty positive steady-state varieties

	Network	Mixed vol.	Network	Mixed vol.
(1)	$2\:A \longrightarrow 2\:B \longrightarrow A + B$	2	$(14) 2 \: A \longrightarrow A \ , \ A + B$	$\longrightarrow B$ 1
(2)	$2\: A \longrightarrow 2\: B \ , \ B \longrightarrow A$	2	(15) $A + B \rightleftharpoons 0$	2
(3)	$2A \longrightarrow A \ , \ B \longrightarrow A + B$	2	(16) $B \longrightarrow A$, $A + B -$	$\rightarrow 2 \text{ A}$ 1
(4)	$B \longrightarrow A \ , \ 2A \longrightarrow A + B$	2	$(17) 0 \longrightarrow 2 \operatorname{B} \;,\; \operatorname{A} + \operatorname{B}$	$\longrightarrow A$ 1
(5)	$B \longrightarrow A \ , \ 2B \longrightarrow A + B$	1	$(18) 2 \operatorname{B} \longrightarrow 0 \ , \ \operatorname{A} + \operatorname{B}$	$\longrightarrow A$ 1
(6)	$2\mathrm{A} \longleftrightarrow 2\mathrm{B}$	2	(19) $A + B \longrightarrow 2 A$ —	$\rightarrow 2 B$ 1
(7)	$2A \longrightarrow A + B \longleftarrow 2B$	2	(20) $A + B \longrightarrow 2 B \longrightarrow$	A + B 1
(8)	$B \longrightarrow A \ , \ 2 B \longrightarrow 2 A$	1	$(21) A+B \longrightarrow 2B \ , \ B$	$\longrightarrow \Lambda$ 1
(9)	$B \longrightarrow 2B \;,\; A \longrightarrow A + B$	1	$(22) \qquad A \longrightarrow 0 \ , \ B \longrightarrow$	A + B 1
(10)	$2B \longrightarrow 0 \ , \ A \longrightarrow A + B$	2	(23) $A \rightleftharpoons B$	1
(11)	$A \rightleftharpoons 2 B$	2	$(24) \qquad A+B \longrightarrow A \ , \ 0 \ -$	$\rightarrow B$ 1
(12)	$\mathrm{A} + \mathrm{B} \longrightarrow 2\mathrm{B} \longleftarrow 2\mathrm{A}$	1	(25) $A + B \rightleftharpoons A$. 1
(13)	$2A \longrightarrow A + B \longrightarrow 2B$	1		

Figure: Networks with non-zero mixed volume

Data and Findings Original 25 Networks

	A	В	С	D	E	F	G	н	1	J	к	L
1	networks	EDD	degree	dim	weakly reversible	deficiency	dim of sing locus	shape of graph	relationship with rate constants	eqn of SS variety (xa-x, xb-y)	positive SS variety	EDD of PSSV
2	R22: A>0, B>A+B	1	1	1	1 F	1	-1	line	slope k1/k2	y= k1/k2 x	y=k1/k2 x	1
3	R23: A>B, B>A	1	1	1	1 T	0	-1	line	slope k1/k2	y= k1/k2 x	y=k1/k2 x	1
4	R9: B>2B, A>B+A	1	1	1	1 F	1	-1	line	slope -k2/k1	y= -k2/k1 x	empty	0
6	R5: B>A, 2B>B+A	2	2		1 F	1	-1	horizontal parallel lines	lines y=0, -k1/k2	y(k1+k2 y)=0	empty	0
6	R8: B>A, 2B>2A	2	2		1 F	1	-1	horizontal parallel lines	lines y=0, -k1/2k2	y(k1+2 k2 y)=0	empty	0
7	R16: B>A, B+A>2A	2	2		1 F	1	0	plus sign	lines y=0, x=-k1/k2	y(k1+k2 x)=0	empty	0
8	R21: A+B>2B, B>A	2	2		1 F	1	0	plus sign	lines y=0, x=k2/k1	y(k1 x-k2)=0	x=k2/k1 (vertical)	1
9	R25: A+B>A, A>A+B	2	2		1 T	0	0	plus sign	lines x=0, y=k2/k1	x(k2-k1 y)=0	y=k2/k1 (horizontal)	1
10	R12: A+B>2B, 2A>2B	2	2		1 F	1	0	rotated X at origin	lines x=0 and y=-2k2/k1 ×	x(k1 y+2 k2 x)=0	empty	0
- 11	R14: 2A>A, A+B>B	2	2		1 F	1	0	rotated X at origin	lines x=0 and y=-k1/k2 x	x(k1 x+k2 y)=0	empty	0
12	R13: 2A>A+B, A+B>2B	2	2		1 F	1	0	rotated X at origin	lines x=0 and y=-k1/k2 x	x(k1 x+k2 y)=0	empty	0
13	R18: 2B>0, B+A>A	2	2		1 F	1	0	rotated X at origin	lines y=0 and y=-k2/2k1 x	y(2 k1 y+k2 x)=0	empty	0
14	R19: A+B>2A, 2A>2B	2	2		1 F	1	0	rotated X at origin	lines x=0 and y=2k2/k1 x	x(k1 y-2 k2 x)=0	y=2 k2/k1 x	1
15	R20: A+B>2B, 2B>A+B	2	2		1 T	0	0	rotated X at origin	lines y=0 and y=k1/k2 x	y(k1 x-k2 y)=0	y=k1/k2 x	1
18	R6: 2A>2B, 2B>2A	2	2		1 T	0	0	X at origin	slopes are pm sqrt(k1/k2)	y*2=k1/k2 x*2	y=sqrt(k1/k2)x	1
17	R1: 2A>2B, 2B>A+B	2	2		1 F	1	0	X at origin	slopes are pm sqrt(2k1/k2)	y*2=2 k1/k2 x*2	y=sqrt(2 k1/k2)x	1
18	R7: 2A>A+B, 2B>A+B	2	2		1 F	1	0	X at origin	slopes are pm sqrt(k1/k2)	y*2=k1/k2 x*2	y=sqrt(k1/k2)x	1
19	R2: 2A>2B, B>A	3	2		1 F	1	-1	parabola	through (1,2k1/k2)	y=2 k1/k2 x^2	y=2 k1/k2 x*2	3
20	R3: 2A>A, B>A+B	3	2		1 F	1	-1	parabola	through (1,k1/k2)	y=k1/k2 x*2	y=k1/k2 x*2	3
21	R4: B>A, 2A>B+A	3	2		1 F	1	-1	parabola	through (1,k2/k1)	y=k2/k1 x^2	y=k2/k1 x*2	3
22	R10: 2B>0, A>B+A	3	2		1 F	1	-1	sideways parabola	through (2k1/k2,1)	x=2 k1/k2 y^2	x=2 k1/k2 y^2	3
23	R11: A>2B, 2B>A	3	2		1 T	0	-1	sideways parabola	through (k2/k1,1)	x=k2/k1 y^2	x=k2/k1 y*2	3
24	R15: A+B>0, 0>A+B	4	2		1 T	0	-1	hyperbola	through (k2/k1, 1) and (-k2/k1, -1)	xy=k2/k1	xy=k2/k1	4
25	R17: 0>2B, B+A>A	4	2		1 F	1	-1	hyperbola	through (2k1/k2, 1) and (-2k1/k2, -1	xy=2 k1/k2	xy=2 k1/k2	4
28	R24: A+B>A, 0>B	- 4	2		1 F	1	-1	hyperbola	through (k2/k1, 1) and (-k2/k1, -1)	xy=k2/k1	xy=k2/k1	4

Originally focused on EDD

 Moved on to categorizing by steady-state and positive steady-state varieties

Steady-State Varieties Original 25 Networks

Steady-state variety types:

- parallel lines, plus sign, X shape
- parabola, hyperbola

Positive steady-state variety types:

 slanted line, vertical or horizontal line, parabola, hyperbola

Figure: X shape

Elise, Leo, Vuong, and Julian (PRiME)

Figure: Parabola

Figure: Hyperbola

Geometry of Small CRNs

Expanding Beyond 2S2R

Table enumerating CRNs

from https://reaction-networks.net/networks/

1-species networks, 3S2R, 2S2R with higher molecularity

One-Species Findings Expanding Beyond 2S2R

Rate-Dependent Varieties

A

Steady-state equation:

$$A \xrightarrow{\kappa_1} 2A \qquad f_A = \kappa_1 x_A - \kappa_2 x_A - 2\kappa_3 x_A^2$$
$$= x_A (\kappa_1 - \kappa_2 - 2\kappa_3 x_A)$$
$$A \xrightarrow{\kappa_2} 0$$

Steady-state variety:

$$2A \xrightarrow{\kappa_3} 0 \qquad \qquad x_A = 0, \ x_A = \frac{\kappa_1 - \kappa_2}{2\kappa_3}$$

Positive steady-state variety nonempty when $\kappa_1 > \kappa_2$

Coming Back with a Broader Perspective Expanding Beyond 2S2R

- How can we categorize these steady-state varieties using the new info we have?
- Is mixed volume the best way to determine which networks have positive steady-state varieties?
- Applying code developed with larger databases to solve computational problems in 2S2R

Let's check all 210 chemical reaction networks!

Translation Algorithm

- \blacksquare All 210 networks were listed as strings of numbers in a .txt file
- ullet first digit, m, is the number of reactions
- second digit, n, is the number of species
- all numbers after are listed as pairs
- ullet here, we have m,n=2, and 4 pairs after

2203032121

Networks were derived from the database at https://reaction-networks.net/networks/.

2203032121

- \bullet Our string, omitting the m & n entries, is described by the set $H=\{0,1,2,3\}$
- The pairs are made of one species number and one reaction number.
 - \heartsuit These numbers are all entries, h_i , in H
 - Reaction numbers: $0 \le h_i \le m-1$
 - Species numbers: $m \le h_i \le m + n 1$
- Here, the set of reaction and species numbers are

$$R = \{0, 1\}, S = \{2, 3\}.$$

2203032121

Individual reactions and species are labeled sequentially.

 $\heartsuit R = \{0,1\} \Rightarrow r_0, r_1 \text{ are our reactions}$

$$\heartsuit S = \{2, 3\} \Rightarrow 2 = A = s_1, \ 3 = B = s_2$$

The ordering of r_i, s_i in a pair tells you if s_i is in the product or reactant complex.

- \heartsuit $(s_i, r_i) \Rightarrow s_i$ is in the reactant complex
- \heartsuit $(r_i, s_i) \Rightarrow s_i$ is in the product complex

Example: (0,3) is (r_0, s_2) , and (2,1) is (s_1, r_1) which becomes

$$(0,3): \longrightarrow B$$

 $(2,1): A \longrightarrow$

Translation Algorithm

2203032121

- ullet In this network, the pairs (0,3) and (2,1) have multiplicity 2
- \blacklozenge So, "multiply" these reactions each by 2
- Combine like reactions, "adding" complexes.

$$(0,3): \longrightarrow B$$

$$(0,3): \longrightarrow B$$

$$(2,1):A\longrightarrow$$

 $(2,1): A \longrightarrow$

Now add the respective reaction rates κ_1, κ_2 :

$$0 \xrightarrow{\kappa_1} 2B$$

$$2A \xrightarrow{\kappa_2} 0$$

- Made a function, called superEDD, to compute various qualities
 - EDD, codim(I), deg(I), generators and dimensions of the singular locus, steady-state equations
- Noticed errors whenever the ideal was equal to the entire plane.
 - correspond to empty steady-state varieties
- Graphed and recorded all of the other networks.

Among the rest of the 210 networks, four new steady-state variety classes emerged:

- 1. Empty
- 2. The origin
- 3. Single coordinate axis
- 4. Both coordinate axes

Only one of the 185 new reactions had a nonempty positive steady-state variety.

There are four possible shapes of a nonempty positive steady-state variety:

- 1. Horizontal/vertical line
- 2. Line through the origin
- 3. Parabola
- 4. Hyperbola

We proved classifications of all networks producing each type of variety.

Lines Positive Steady-State Varieties

Figure: Line through origin

$$2A \xrightarrow[\kappa_2]{\kappa_1} 2B$$

Figure: Vertical line

$$B \xrightarrow{\kappa_1} 2B$$
$$A + B \xrightarrow{\kappa_2} A$$

Degree 2 Conics Positive Steady-State Varieties

Horizontal/Vertical Lines Looking for Patterns

Categorization Theorem

Theorem $(F_2H_2, 2023)$

Given a chemical reaction network, the positive steady-state variety will be non-axis horizontal or vertical line if and only if the following criteria are true:

- 1. One reactant complex is A + B and the other is monomolecular
- 2. The columns of the stoichiometric matrix are negative multiples of one another.

Horizontal/Vertical Lines Worked Example

$$A + B \xrightarrow{\kappa_1} 2B$$
$$B \xrightarrow{\kappa_2} A$$
$$N = \begin{bmatrix} -1 & 1\\ -1 & 1 \end{bmatrix}$$

 $f_A = -\kappa_1 x_A x_B + \kappa_2 x_B$ $f_B = \kappa_1 x_A x_B - \kappa_2 x_B$

$$x_B = 0, \ x_B = \frac{\kappa_2}{\kappa_1}$$

Reactant complexes are A + B and B

The columns differ by a factor of -1

•
$$f_A = -f_B$$

 Positive portion of the variety is a vertical line

Three examples of slanted line networks:

$$A + B \xrightarrow{\kappa_1} 2A$$

$$2A \xrightarrow{\kappa_2} 2B$$

$$N = \begin{bmatrix} 1 & -2 \\ -1 & 2 \end{bmatrix}$$

$$A \xrightarrow{\kappa_1} K_2 B$$

$$N = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$2A \xrightarrow{\kappa_1} K_2 2B$$

$$N = \begin{bmatrix} -2 & 2 \\ 2 & -2 \end{bmatrix}$$

Theorem $(F_2H_2, 2023)$

Given a chemical reaction network, the positive steady-state variety will be a line through the origin if and only if the following hold:

- 1. The two reactant complexes have the same number of molecules
- 2. The supports of the reactant complexes are nonempty and distinct (not necessarily disjoint).
- 3. The columns of the stoichiometric matrix are negative multiples of each other.

Slanted Lines Worked Example

$$A + B \xrightarrow{\kappa_1} 2A$$
$$2A \xrightarrow{\kappa_2} 2B$$
$$N = \begin{bmatrix} 1 & -2\\ -1 & 2 \end{bmatrix}$$

$$f_A = \kappa_1 x_A x_B - 2\kappa_2 x_A^2$$

$$f_B = -\kappa_1 x_A x_B + 2\kappa_2 x_A^2$$

$$x_A = 0, \ x_B = \frac{2\kappa_2}{\kappa_1} x_A$$

 Reactant complexes have the same number of molecules and distinct supports

 Columns differ by a factor of -2

•
$$f_A = -f_B$$

 Positive portion of the variety is a slanted line

Three examples of parabola networks:

Theorem $(F_2H_2, 2023)$

Given a chemical reaction network, the positive steady-state variety will be a parabola if and only if the following hold:

- 1. One reactant complex is bimolecular and the other is monomolecular
- 2. The supports of the reactant complexes are disjoint
- 3. The columns of the stoichiometric matrix are negative linear multiples of each other.

Parabolas Worked Example

$$2A \xrightarrow{\kappa_1} 2B$$

$$B \xrightarrow{n_2} A$$

$$N = \begin{bmatrix} -2 & 1\\ 2 & -1 \end{bmatrix}$$

$$f_A = -2\kappa_1 x_A^2 + \kappa_2 x_B$$
$$f_B = 2\kappa_1 x_A^2 - \kappa_2 x_B$$

$$x_B = \frac{2\kappa_1}{\kappa_2} x_A^2$$

 Supports of the reactant complexes are disjoint; bimolecular & monomolecular.

Columns differ by a factor of -2

•
$$f_A = -f_B$$

 Variety is defined by the equation of a parabola

Hyperbolas Looking for Patterns

All hyperbola networks:

Theorem $(F_2H_2, 2023)$

Given a chemical reaction network, the positive steady-state variety will be a hyperbola if and only if the following hold:

- 1. The reactant complexes are A + B and 0
- 2. The columns of the stoichiometric matrix are negative linear multiples of each other.

Hyperbolas Worked Example

$$A + B \xleftarrow[\kappa_2]{} 0$$
$$N = \begin{bmatrix} -1 & 1\\ -1 & 1 \end{bmatrix}$$

 κ_1

• Reactant complexes are
$$A + B$$
 and 0

Columns differ by a factor of -1

$$f_A = -\kappa_1 x_A x_B + \kappa_2$$

$$f_B = -\kappa_1 x_A x_B + \kappa_2$$

$$x_A x_B = \frac{\kappa_2}{\kappa_1}$$

•
$$f_A = f_B$$

 Variety is defined by the equation of a hyperbola

Future Directions - Higher Molecularity

Conjecture

For slanted lines: Molecularity of

Molecularity of distinct supports is even \Rightarrow 2 lines in SSV odd \Rightarrow 1 line in SSV

Conjecture

For horizontal/vertical lines: Molecularity of non-shared reactant species is: $even \Rightarrow 0, 2$ lines in SSV

 $\mathit{odd} \Rightarrow 1 \mathit{~line~in~SSV}$

Ex:
$$2A + 2B \xrightarrow{\kappa_1} 3A + B$$
$$2B + A \xrightarrow{\kappa_2} 3B$$

Conjecture

The variety types of networks only depend on reactant complexes, as long as columns of stoichiometric matrix are negative multiples of each other

$$2A + 2B \xrightarrow{\kappa_1} 3A + B \qquad 2A + 2B \xrightarrow{\kappa_1} B$$
$$2B + A \xrightarrow{\kappa_2} 3B \qquad 2B + A \xrightarrow{\kappa_2} 3A + 3B$$

Future Directions - Larger Networks

Table 2: Genuine networks (no unused species)

	1 Reaction	2 Reactions	3 Reactions	4 Reactions	5 Reactions	6 Reactions	Total
1 Species	6	15	20	15	6	1	63
2 Species	10	210	2,024	13,740	71,338	297,114	384,436
3 Species	5	495	17,890	414,015	7,262,666 (zip: 12.5 <u>MB,</u> unzip: 473 <u>MB</u>)	103,511,272 (zip: 197 <u>MB,</u> unzip: 7.97 <u>GB</u>)	111,206,343
4 Species	1	451	47,323	2,900,934	128,328,834 (zip: 196 <u>MB,</u> unzip: 8.88 <u>GB</u>)		131,277,543
5 Species	o	204	55,682	7,894,798 (zip: 10.6 <u>MB,</u> unzip: 466 <u>MB</u>)			7,950,684
6 Species	0	54	35,678	10,704,289 (zip: 15.1 <u>MB,</u> unzip: 650 <u>MB</u>)			10,740,021
Total	22	1,429	158,617	21,927,791	135,662,844	103,808,387	261,559,090

Figure: There remains a lot left to explore...

Acknowledgments

Thank you Professor Luis & Mark!

- Thank you also to Dr. Goins & Dr. Barrios for running PRiME 2023.
- Funding for this project was provided by Pomona College and the National Science Foundation (DMS-2113782).

 $\left[1\right]$ Murad Banaji. Chemical reaction network enumeration.

https://reaction-networks.net/networks/.

[2] Jane Ivy Coons, Mark Curiel, and Elizabeth Gross. Mixed volumes of networks with binomial steady-states, 2023.

[3] Jan Draisma, Emil Horobeţ, Giorgio Ottaviani, Bernd Sturmfels, and Rekha R. Thomas. The Euclidean distance degree of an algebraic variety. Found. Comput. Math., 16(1):99-149,2016. [4] Nida Obatake, Anne Shiu, and Dilruba Sofia. Mixed volume of small reaction networks. Involve, a Journal of Mathematics,

13(5): 845 - 860, dec 2020.